
Web Shell Detection &
Prevention (English)

HELLODIGI.IR

Abolfazl razipour

http://www.free-powerpoint-templates-design.com/

Web shell

Detect web shell on Linux

Detect web shell with Splunk

Detect web shell with ELK

Detect web shell with snort

Detect web shell with Suricata

Detect web shell with Modsecurity

Contentsا

Detect web shell on Windows

Detect web shell with Wireshark

START
www.hellodigi.ir

Decide where you want to be and
don’t stop until you get there

Hi, I am a senior network security professional
with more than 8 years of experience in

network security. During this time, I have
worked with developing and implementing

security solutions for large and small networks,
identifying and fixing network vulnerabilities,

analyzing security attacks and managing
security events in various organizations.

Abolfazl Razipour

https://hellodigi.ir/profile/razipoor

razipoorabolfazl@yahoo.com

First, we discussed the use of WebShell detection

methods on Linux and Windows operating

systems, and then discussed the use of log

analysis tools such as Splunk and ELK Stack to

review logs. Also we've talked about using

IDS/IPS tools like Snort and Suricata and WAFs

like Mod Security to prevent attacks and detect

webshell. Finally we checked the detection

method in wireshark tool

I hope this introduction will help you to better

understand the topics raised and you can use this

information to increase the security of your

systems.

Introduction

Webshell

A webshell is a type of script that runs on a web server and allows

an attacker to execute commands on the server through a web

browser or web-related tool. This script can be written in various

programming languages, such as PHP, ASP, JSP, Perl, Python,

etc. Web shells can allow an attacker to view, edit, or delete files,

steal data, perform espionage operations, steal system

resources, or even use the server as part of a botnet.

Simple webshell example

One of the things
you should pay
attention to is that
using web shells for
illegal purposes is
prohibited and can
cause legal
problems. Also, the
coding of web shells
requires knowledge
and experience and
must be done very
carefully so as not
to threaten the
security of the
system. Below are
two simple
examples of web
shells in PHP and
ASP languages:

<?php
if(isset($_REQUEST['cmd'])){

$cmd = ($_REQUEST['cmd']);
system($cmd);

}
?>

This is a simple web shell for PHP: using this web shell, commands can be sent via the "cmd"
parameter.

<%
If Request.Form("cmd")<>"" Then

Dim cmd, rs
Set cmd = Server.CreateObject("WScript.Shell")
Set rs = cmd.Exec("cmd /c " & Request.Form("cmd"))
Response.Write(rs.StdOut.ReadAll)

End If
%>

It is a simple web shell for ASP. Similar to the PHP web shell, using this web

shell commands can be sent through the "cmd" form field.

In both examples, the web shell can execute commands through an HTTP

request.

Abolfazl razipour

Persist web shell

Web Site

Server

Backdoor

Attacker

web shell

Below is a simple example of a Web Shell intrusion process:

Abolfazl razipourابوالفضل رضی پور

The most famous webshell used

hell o digi

30%

C99 WebShell

25%

China Chopper WebShell

20%

JFolder WebShell

Tux WebShell

15%

B374K WebShell / RootShell Family

10%

Abolfazl razipourابوالفضل رضی پور

Apache web server log

Apache HTTP Server, commonly referred to simply as Apache, is an

open source web server developed by the Apache Software

Foundation.

Apache was one of the first web servers that were provided for web

services, and with its help, web sites can be hosted on the Internet.

It stores its logs in the following paths:

For Debian-based systems such as Ubuntu:
/var/log/apache2/access.log
/var/log/apache2/error.log

For RedHat based systems as CentOS:
/var/log/httpd/access_log
/var/log/httpd/error_log

Apache web server log

Apache was one
of the first web
servers that were
provided for web
services, and with
its help, web sites
can be hosted on
the Internet.

The default structure of an Apache log includes the following fields:

127.0.0.1 - razipour [10/Oct/2000:13:55:36 -0700] "GET /apache.gif HTTP/1.0" 200 2326 "http://hellodigi.ir" "Mozilla/4.08 [en] (Win98; I ;Nav)"

127.0.0.1 :This field indicates the IP address of the client or user who sent the request.

Apache log sample

[10/Oct/2000:13:55:36 -0700]: This field shows the time and date of the request.

razipour: This field indicates the username of the user connected to the server via HTTP authentication or FTP authentication.

/iisstart.htm: This field shows the requested path or URL.

"GET /apache_pb.gif HTTP/1.0“:This field shows the command sent to the server. In this example, "GET" is the HTTP method, "/apache_pb.gif"
is the path to the requested file, and "HTTP/1.0" is the HTTP protocol version used.

200:This field displays the HTTP status code that indicates the result of the request. In this example, 200 means "successful" or
"OK"

2326 :This field displays the HTTP status code that indicates the result of the request. In this example, 200 means "successful"
or "OK"..

:"http://www.hellodigi.ir" This field indicates the web address of the page from which the user has linked to the desired file. This field may be "-"
which means no information is available

"Mozilla/4.08 [en] (Win98; I ;Nav) :This field is related to browser and system information

Abolfazl razipour

The Webshell log on the Apache web server

These example logs
may indicate
suspicious activity
related to webshells.
However, to confirm
the reality of these
cases, more
research and a more
detailed
investigation is
needed, which we
will do together

192.168.1.102 - - [12/May/2023:15:45:32 +0000] "GET /c99.php HTTP/1.1" 200 4523 "http://hellodigi.ir/" "Mozilla/5.0 (Windows NT 10.0; Win64;
x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/53.3"

Apache log example

Access to files with suspicious names

Use of questionable functions in request parameters

192.168.1.105 - - [12/May/2023:16:21:15 +0000] "GET /index.php?eval=base64_decode('c29tZSBjb2RlIGhlcmU=') HTTP/1.1" 200 1287
"http://hellodigi.ir/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/ (KHTML, like Gecko) Chrome"

192.168.1.108 - - [12/May/2023:17:54:21 +0000] "GET /uploads/r57.jsp HTTP/1.1" 200 2516 "http://hellodigi.ir/" "Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"

Access to files with suspicious extensions

192.168.1.108 - - [12/May/2023:17:54:21 +0000] "GET /uploads/r57.jsp HTTP/1.1" 200 2516 "http://hellodigi.ir/" "Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"

Execute system commands in a PHP file

Using the eval function to run the encrypted code

192.168.1.108 - - [12/May/2023:17:54:21 +0000] "GET /uploads/r57.jsp HTTP/1.1" 200 2516 "http://hellodigi.ir/" "Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"

Abolfazl razipour

IIS web server log
Internet Information Services (IIS) is a web server owned by Microsoft
and designed for use in Windows operating systems. IIS supports HTTP,
HTTP/2, HTTPS, FTP, FTPS, SMTP, and NNTP.
IIS is part of the Windows operating system and is installed with it by
default
IIS (Internet Information Services) web server logs, provided by
Microsoft, are a record of all requests and responses processed by the
web server. These logs provide important information that can be used
for performance analysis, troubleshooting, security, and web server
optimization. Microsoft's IIS server stores its logs in the following path
by default:%SystemDrive%\inetpub\logs\LogFiles

IIS web server log

IIS (Internet
Information Services)
web server logs,
provided by
Microsoft, are a
record of all requests
and responses
processed by the
web server.

The default structure of an IIS log includes the following fields:

2023-02-25 00:00:00 192.168.5.55 GET /iisstart.htm - 80 - 192.18.15. 5 Mozilla/4+(compatible;Windows++Server) - 200 0 0 187

2023-02-25 00:00:00: This field shows the time and date of the request.

Sample IIS log

GET: This field indicates the HTTP method used. In this example, GET is used.

192.168.5.55: This field indicates the IP address of the client or user who sent the request.

/iisstart.htm: This field shows the requested path or URL.

:- This field is usually used to indicate the service port or username. In this example, both are empty.

80: This field indicates the server port.

192.18.15.5 :This field indicates the IP address of the server.

Mozilla/4+(compatible;Windows++Server) :This field indicates the client's browser specifications.

-: This field is usually used to indicate the referring URL. In this example, the referrer URL does not exist.

0 :The code below shows the status of IIS.

0:This code field shows the following Win32 status.

187 : This field indicates the number of bytes sent to the client in response. This value does not include HTTP
headers. In this example, 187 bytes are sent. Abolfazl razipour

The webshell log on the IIS web server

These example logs
may indicate
suspicious activity
related to webshells.
However, to confirm
the reality of these
cases, more research
and a more detailed
investigation is
needed, which we
will do together

2023-05-08 19:35:46 192.168.1.101 GET /cmd.jsp - 80 - 198.51.100.2
Mozilla/5.0+(Windows+NT+10.0;+Win64;+x64)+AppleWebKit/537.36+(KHTML,+like+Gecko)+Chrome/58.0.3029.110+Safari/537.36 200 0 0 15

Sample IIS log

Access to files with suspicious names

2023-05-10 10:16:45 192.168.0.2 POST /uploads/shell.asp - 443 - 10.0.0.1 Mozilla/5.0 - 200 0 0 2345

Access to files with suspicious extensions

Execute system commands

2023-05-10 10:17:30 192.168.0.2 POST /uploads/shell.asp cmd=dir 443 - 10.0.0.1 Mozilla/5.0 - 200 0 0 3456

Abolfazl razipour

Webshell detection in Linux

There are four key steps to detecting webshells on Linux:

1. Check files: Server files should be checked with cut-grep-awk

commands to find suspicious or unusual files that may be

webshells.

2. Check logs: Web server logs can indicate web shell attacks, so

they should be checked and analyzed.

3. Use of specialized tools: various diagnostic tools such as

IDS/IPS... And user activity monitoring tools can be useful in

detecting webshells.

4. Network traffic analysis**: Using network traffic analysis tools

such as tshark, suspicious traffic can be identified and

investigated.

Webshell detection in Linux

detect webshells on
Linux systems, you
can use various
available tools and
commands. Here are
some methods and
commands you can
use to find webshells
on Linux:

Using the find command to find files with suspicious names:
find /var/www -type f \(-iname "*.php" -o -iname "*.jsp" -o -iname "*.asp" -o -iname "*.aspx" \) -exec grep -l -E 'c99|r57|wso' {} \;

Using the grep command to search for suspicious functions in files:
grep -r -E --include='*.php' 'eval|shell_exec|system|passthru|exec|popen' /var/www

Using the Clam AV tool to scan files:
sudo clamscan -r -i /var/www

This command looks for PHP files smaller than 2000 bytes in the /var/www directory. Many web shells are small in size to load quickly.

Using the find command to find very small files:

find /var/www -type f -size -2000c -iname "*.php“

Using the awk command to check the number of suspicious functions in the files:
find /var/www -type f -iname "*.php" -exec awk '/eval|shell_exec|system|passthru|exec|popen/ { count++ } END { if(count > 0) { print FILENAME ": " count } }' {} \;

Simple sample script to find suspicious webshell activity

Abolfazl razipour

Webshell detection in Windows

There are several key steps to detect webshells in Windows:

1. Check files: Check system files for signs of webshells, such as files with

suspicious extensions or files with unusual PHP, ASP, JSP, or PERL code.

2. Check the logs: The logs of the IIS web server or any other web server

used can contain information about web shell attacks. Therefore, they

must be examined and analyzed.

3. Using specialized tools: Tools like PowerShell to check files and logs, or

specialized tools like IDS/IPS... and forensic tools can help detect

webshells.

4. Network traffic analysis: Using network traffic analysis tools such as

Wireshark, suspicious traffic can be identified and investigated.

Webshell detection in Windows

To detect webshells
on Windows
systems, you can use
available tools and
various commands.
Here are some
methods and
commands you can
use to find webshells
in Windows:

Scan files and directories: Using PowerShell commands like Get-ChildItem, you can scan files and directories where

webshells may be hiding. In particular, you should pay attention to directories related to web servers and web applications.

File Content Analysis: Using PowerShell commands like Get-Content and Select-String, you can check the content of files to

make sure there is any suspicious code.

Get-ChildItem -Path C:\inetpub\wwwroot\ -File -Recurse | Where-Object { $_.Extension -eq '.asp' -or $_.Extension -eq '.aspx' -or $_.Extension -eq '.php’ }

Get-ChildItem -Path C:\inetpub\wwwroot\ -File -Recurse | Where-Object { $_.Extension -eq '.asp' -or $_.Extension -eq '.aspx' -or $_.Extension -eq '.php' } | Get-Content | Select-
String -Pattern 'shell_exec|eval|base64_decode|gzinflate|str_rot13’

Simple sample script to find suspicious webshell activity

Get-Content C:\inetpub\logs\LogFiles\W3SVC1\u_ex180410.log | Select-String 'cmd.asp’

Suspicious requests in IIS logs

Abolfazl razipour

Detect in Splunk Webshell

To detect webshells using Splunk, the following key steps can be

followed:

1. Data collection: To detect webshell, you first need to send web server logs to

Splunk. These logs may contain data from Apache, IIS, or any other web server.

2. Data analysis: Using Splunk's analytical capabilities, you can review the

collected data. You can use SPL (Splunk Processing Language) queries to find

suspicious patterns in the data.

3. Use rules and alarms: You can set up rules and alarms in Splunk to alert you

when it detects suspicious patterns or webshell-specific symbols.

4. Using Splunk ES or UBA For more advanced detection, you can use Splunk

security products such as Splunk Enterprise Security (ES) or Splunk User

Behavior Analytics (UBA). These tools recognize more complex patterns and
increase the possibility of detecting webshells.

Webshell detection in Splunk

To detect web
shells, you can use
the Splunk tool and
query because to
create an alert or
create a
dashboard:

One of the queries you can use in Splunk to identify webshells and suspicious activity in the Apache sensor is as follows:

index=your_webserver_index sourcetype=access_combined
| eval suspicious_extensions = "php|asp|aspx|pl|cgi"
| rex field=uri_path ".*\.(?P<file_extension>(?i)php|asp|aspx|pl|cgi)"
| search file_extension!="" http_status>=400
| stats count by src_ip, uri_path, http_status, file_extension
| sort - count

Adjust this query according to your needs. It works like this:

index=your_webserver_index sourcetype=access_combined: This section searches for web server logs of the type

"access_combined" returns at the specified index. Replace "your_webserver_index" with your appropriate index name.

eval suspicious_extensions: This section introduces a variable to store suspicious extensions.

rex field=uri_path: This field creates a regex vector to extract the extension of the requested files.

search file_extension!="" http_status>=400: This field only selects records with suspicious extensions and HTTP status

codes higher than 400.stats count by src_ip, uri_path, http_status, file_extension: It calculates requests based on source

IP address, URI path, HTTP status code, and file extension.

sort - count: This section sorts the results by count in descending order.
With this query, you can identify requests with suspicious extensions and HTTP status codes higher than 400..

Abolfazl razipour

Webshell detection in Splunk

To detect web
shells, you can
use the Splunk
tool and query
because to
create an alert
or create a
dashboard:

Here are some more queries in Splunk that you can use to identify suspicious activity and various attacks:

Repeated failed login attempts:

index=your_webserver_index sourcetype=access_combined
| search http_status=401
| stats count by src_ip
| where count > THRESHOLD
| sort - count

index=your_webserver_index sourcetype=access_combined
| search http_status=404
| stats count by uri_path
| where count > THRESHOLD
| sort - count

Multiple requests to non-existent files (404):

Find suspicious activity by browser:

index=your_webserver_index sourcetype=access_combined
| rex field=user_agent "(?i)(?P<suspicious_user_agent>curl|wget|nmap|python|perl|nikto)"
| search suspicious_user_agent!=""
| stats count by src_ip, uri_path, http_status, suspicious_user_agent
| sort - count

Abolfazl razipour

Webshell detection in Splunk

To detect web
shells, you can
use the Splunk
tool and query
because to
create an alert
or create a
dashboard:

Here are some more queries in Splunk that you can use to identify suspicious activity and various attacks:

Access to files with suspicious extensions

index=your_webserver_index sourcetype=access_combined
| rex field=uri_path "\.(?P<suspicious_extension>php[345]?|jsp|jspx|asp|aspx|cgi|pl|sh)$"
| stats count by src_ip, uri_path, http_status, suspicious_extension
| sort - count

index=your_webserver_index sourcetype=access_combined
| rex field=uri_query"(?i)(?P<suspicious_keywords>(c99|c100|r57|wso|shell_exec|passthru|eval|assert|base64_decode|str_rot13|gzinflate))(\W|$)"

| search suspicious_keywords!=""
| stats count by src_ip, uri_path, http_status, suspicious_keywords
| sort - count

Identifying suspicious activities using specific keywords:

Detection of access to files with suspicious names

index=your_webserver_index sourcetype=access_combined
| rex field=uri_path "(?i)(?P<suspicious_filenames>(c99|r57|wso)\.(php[345]?|jsp|jspx|asp|aspx|cgi|pl|sh))$"
| search suspicious_filenames!=""
| stats count by src_ip, uri_path, http_status, suspicious_filenames
| sort - count

:تشخیص دسترسی به فایل های با نام های مشکوک.3

Abolfazl razipour

Webshell detection in Splunk

Here are some more queries in Splunk that you can use to identify suspicious activity and various attacks:

Detect Directory Traversal Attempts:

index=your_webserver_index sourcetype=access_combined
| rex field=uri_path "(?i)(?P<dir_traversal>\.\./|\.\.\\)"
| search dir_traversal!=""
| stats count by src_ip, uri_path, http_status
| sort - count

index=your_webserver_index sourcetype=access_combined
| eval time=strftime(_time, "%Y-%m-%d %H:%M:%S")
| transaction src_ip maxspan=10m maxpause=2s
| where eventcount > THRESHOLD
| table time, src_ip, uri_path, http_status, eventcount
| sort - eventcount

Identifying Brute Force Attempts:

Find spam requests:

index=your_webserver_index sourcetype=access_combined
| rex field=referer "(?i)(?P<spam_referrer>http:\/\/|https:\/\/)(?P<spam_domain>[^\/]+)"
| search spam_domain!=your_domain
| stats count by src_ip, uri_path, http_status, spam_domain
| sort - count

Abolfazl razipour

To detect web
shells, you can
use the Splunk
tool and query
because to
create an alert
or create a
dashboard:

Webshell detection in Splunk

To detect web
shells, you can
use the Splunk
tool and query
because to
create an alert
or create a
dashboard:

Here are some more queries in Splunk that you can use to identify suspicious activity and various attacks:

HTTP requests with unusual paths:

index=iis_logs cs_uri_stem=*cmd* OR cs_uri_stem=*shell* OR cs_uri_stem=*upload* OR cs_uri_stem=*exec*
OR cs_uri_stem=*admin*
| table _time, c_ip, cs_uri_stem, cs(User_Agent), sc_status

Searching for high volume POST requests:

جستجوی درخواست های.1 POST با حجم بالا:

index=iis_logs method=POST
| stats sum(sc_bytes) as total_bytes by cs_uri_stem
| where total_bytes > SOME_THRESHOLD

Searching for POST requests to anonymous files:

index=iis_logs method=POST cs_uri_stem=*.php

Abolfazl razipour

Webshell detection in Splunk

To detect web
shells, you can
use the Splunk
tool and query
because to
create an alert
or create a
dashboard:

Here are some more queries in Splunk that you can use to identify suspicious activity and various attacks:

Detecting unusual requests using structural analysis:

index=iis_logs
| eval length=len(cs_uri_query)
| stats avg(length) as avg stdev(length) as stdev by cs_uri_stem
| eval upper_bound=(avg + (3*stdev))
| where length > upper_bound

Detection of access to files with suspicious extensions:

جستجوی درخواست های.1 POST با حجم بالا:

index=iis_logs cs_uri_stem=*.*php* OR cs_uri_stem=*.*asp* OR cs_uri_stem=*.*aspx* OR cs_uri_stem=*.*jsp*

Identifying suspicious activities using specific keywords:

index=iis_logs cs_uri_query=*cmd.exe* OR cs_uri_query=*bash* OR cs_uri_query=*sh* OR
cs_uri_query=*python*

:تشخیص فعالیت های مشکوک با استفاده از کلمات کلیدی مشخص.2

Abolfazl razipour

Webshell detection in Splunk

To detect web
shells, you can
use the Splunk
tool and query
because to
create an alert
or create a
dashboard:

Here are some more queries in Splunk that you can use to identify suspicious activity and various attacks:

Detection of access to files with suspicious names:

index=iis_logs cs_uri_stem=*shell* OR cs_uri_stem=*hack* OR cs_uri_stem=*exploit*

Multiple requests to non-existent files (404):

جستجوی درخواست های.1 POST با حجم بالا:

index=iis_logs sc_status=404 | stats count by cs_uri_stem | where count > 10

Find suspicious activity by browser:

index=iis_logs cs(User-Agent)=*python* OR cs(User-Agent)=*perl* OR cs(User-Agent)=*curl* OR cs(User-
Agent)=*wget*

:تشخیص فعالیت های مشکوک با استفاده از کلمات کلیدی مشخص.2

Abolfazl razipour

ELK detection in Webshell

To use ELK (Elasticsearch, Logstash, Kibana) to detect Webshell attacks, you must first
send log information from your web server (whether from Apache, IIS, or another web
server) to Elasticsearch. This can be done using Logstash or Beats.
After sending data to Elasticsearch, you can analyze this data using Kibana. To find signs
of a Webshell attack, you can use the following methods:
1. Checking requests to files with suspicious extensions (eg .php, .asp, .aspx, .jsp and ...).
2. Check queries that have suspicious keywords such as cmd.exe, bash, sh, python, etc.
3. Check requests that go to files with suspicious names such as shell, hack, exploit, etc.
4. Investigate a large number of 404 (not found) requests, which could indicate an
attempt to find vulnerable files.
5. Checking User-Agents that have suspicious names such as python, perl, curl, wget, etc.

Webshell detection in ELK

To detect web
shells, you can use
the ELK tool and
query because to
create an alert or
create a
dashboard:

Here are some more queries in ELK that you can use to identify suspicious activity and various attacks:
Identifying suspicious activities using specific keywords and patterns:

GET filebeat-*/_search
{
"query": {
"regexp": {
"request":

".*((cmd|passthru|eval|exec|assert|create_function|include|require)(_once)?|system|popen|show_source|phpinfo|shell_exe
c|base64_decode|gzinflate|chmod|mkdir|fopen|fclose|readfile)\\(.*\\).*"

}
}

}

Check for attempts to manipulate files (such as changing access levels, creating new files, opening and closing files):

:تشخیص دسترسی به فایل های با نام های مشکوک.3

GET filebeat-*/_search
{
"query": {
"regexp": {
"request": ".*((chmod|mkdir|fopen|fclose)\\(.*\\)).*"

}
}

}

Abolfazl razipour

Webshell detection in ELK

Here are some more queries in ELK that you can use to identify suspicious activity and various attacks:
Review of strange commands used in Webshell attacks:

GET filebeat-*/_search
{
"query": {
"regexp": {
"request": ".*((wget|curl)\\s.*\\s-o\\s.*|php\\s.*\\s-r\\s.*).*"

}
}

}

Check the commands used to run processes in the background:

:تشخیص دسترسی به فایل های با نام های مشکوک.3

GET filebeat-*/_search
{
"query": {
"regexp": {
"request": ".*(&\\s.*|;\\s.*).*"

}
}

}

Abolfazl razipour

To detect web
shells, you can use
the ELK tool and
query because to
create an alert or
create a
dashboard:

Snort detection in Webshell

Snort is an open source IDS intrusion detection system that can be used
to detect web shell attacks. This tool can help detect malicious
activities by analyzing network traffic and detecting suspicious patterns.
You can use different rules to detect web shell attacks with Snort. These
rules are designed depending on the specific patterns used in web shell
attacks. Below is an example of these rules:

Webshell detection in Snort

You can use
different rules to
detect web shell
attacks with Snort.
These rules
depend on the
specific patterns
used in webshell
attacks

Detection of access to files with suspicious names:

:تشخیص دسترسی به فایل های با نام های مشکوک.3

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC access to potential webshell"; flow:to_server,established;
content:".php"; http_uri; nocase; pcre:"/\/(shell|upload|admin|c99|r57|wso)\.php/Ui"; classtype:web-application-attack; sid:1000002; rev:1;)

Detect suspicious command line commands in HTTP request parameters:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC potential webshell command execution"; flow:to_server,established;
content:"cmd="; http_uri; nocase; pcre:"/cmd=(id|uname|ls|cat|whoami|wget|curl|nc|netcat|ping|ifconfig|ipconfig)/Ui"; classtype:web-application-attack;
sid:1000003; rev:1;)

Detection of uploaded files with suspicious extensions:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC potential webshell file upload"; flow:to_server,established;
content:"Content-Disposition: form-data;"; http_header; content:".php"; http_client_body; nocase; classtype:web-application-attack; sid:1000004; rev:1;)

Abolfazl razipour

Suricata detection in Webshell

Suricata is an open source intrusion detection system that can be used
to analyze network traffic and detect attacks. Using Suricata rules, web
shell attacks can be detected.
Below is an example of these rules:

Webshell detection in Suricata

To detect web
shell attacks
with Suricata,
you can use
different rules.
These rules
depend on the
specific patterns
used in webshell
attacks

Detection of access to files with suspicious names:

:تشخیص دسترسی به فایل های با نام های مشکوک.3

Detect suspicious command line commands in HTTP request parameters:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC potential webshell command execution"; flow:to_server,established;
content:"cmd="; http_uri; nocase; pcre:"/cmd=(id|uname|ls|cat|whoami|wget|curl|nc|netcat|ping|ifconfig|ipconfig)/Ui"; classtype:web-application-attack;
sid:1000003; rev:1;)

Detection of uploaded files with suspicious extensions:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC potential webshell file upload"; flow:to_server,established;
content:"Content-Disposition: form-data;"; http_header; content:".php"; http_client_body; nocase; classtype:web-application-attack; sid:1000004; rev:1;)

alert http $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC access to potential webshell"; flow:to_server,established; content:".php";
http_uri; nocase; pcre:"/\/(shell|upload|admin|c99|r57|wso)\.php/Ui"; classtype:web-application-attack; sid:1000002; rev:1;)

Abolfazl razipour

Wireshark detection in Webshell

Wireshark is an advanced network traffic analysis tool. This tool can be
used to detect suspicious activities such as web shell attacks. However,
it should be noted that Wireshark is a network traffic analysis tool and
not a complete IDS intrusion detection system. To detect web shell
activity using Wireshark, you can look for specific patterns in HTTP or
HTTPS traffic.

Webshell detection in Wireshark

To detect web
shell activity
using Wireshark,
you can look for
specific patterns
in HTTP or
HTTPS traffic.

Filter suspicious files:

:تشخیص دسترسی به فایل های با نام های مشکوک.3

Filter suspicious files:

http.request.uri contains ".php"

http.request.uri contains "c99.php"

http.request.uri contains ".php"

To detect suspicious activity based on the browser, we can use the http.user_agent

field in Wireshark. The following filter filters out HTTP requests whose User-Agent

matches a specified value. For example, if we want to see all requests whose User-

Agent is "Mozilla/5.0", we can use the following filter:

http.user_agent contains "curl" || http.user_agent contains "wget"

Abolfazl razipour

Modsecurity in Webshell detection

ModSecurity is an open source web firewall module for

Apache, IIS, and Nginx that acts as a web application

firewall (WAF) and can help detect and prevent

webshell attacks. For this purpose, ModSecurity rules

can be used.

Webshell detection in Modsecurity

To detect web
shell attacks with
modsecurity, you
can use different
rules. These rules
depend on the
specific patterns
used in webshell
attacks

For example, specifically for webshell detection, one of the rules we can use in ModSecurity is as
follows:

:تشخیص دسترسی به فایل های با نام های مشکوک.3

SecRule REQUEST_FILENAME "@endsWith .php" \
"id:1000000,phase:1,t:none,log,deny,msg:'PHP file requested'"

SecRule ARGS_POST|ARGS_GET "@rx (eval\(|base64_decode|gzinflate|str_rot13|convert_uudecode)\s*\(.*\)" \
"id:1000001,phase:2,t:none,log,deny,msg:'Potential web shell activity'"

The first rule checks if the requested file name ends with .php. If so, it logs an event and
rejects the request.

The second rule checks if any of the POST or GET parameters match patterns that can
indicate webshell activity, including the eval, base64_decode, gzinflate, str_rot13, and
convert_uudecode functions. If so, it logs an event and rejects the request.

Abolfazl razipour

THANK YOU
Abolfazl razipour

